Exercício 8-5 - Exercício de análise raster: 3D

1h30m

INTRODUÇÃO

Exercício de SIG 3D com um pequeno projecto para as ilhas açorianas do Pico e Faial. Realização de um modelo digital de elevação, mapa de declives e exposição de vertentes, geração de curvas de nível e vista 3D das ilhas.

OBJETIVOS E COMANDO NOVOS

Aprender a realizar análise 3D em ArcMap, ArcScene e ArcGlobe

- Barra de ferramentas 3D Analyst: Menu contextual do menu principal 3D Analyst
- Análise 3D, criar modelo digital de elevação, TIN: ArcToolbox 3D Analyst Tools Data Management - TIN - Create TIN
- Análisis 3D, criar modelo digital de elevação, Hutchinson: ArcToolbox 3D Analyst Tools -Raster Interpolation - Topo to Raster
- Análise 3D, criar camada de sombras: ArcToolbox Spatial Analyst Tools Surface Hillshade
- Análisis 3D, criar camada de curvas de nível: ArcToolbox Spatial Analyst Tools Surface -Contour
- Análisis 3D, criar camada de declives: ArcToolbox Spatial Analyst Tools Surface Slope
- Análisis 3D, criar camada de exposição de vertentes: ArcToolbox Spatial Analyst Tools -Surface - Aspect
- Abrir ArcScene: Início -Todos os programas ArcGIS- ArcScene
- Abrir ArcGlobe: Início -Todos os programas ArcGIS- ArcGlobe
- Visualização 3D, altitudes: Menu contextual da camada Properties Base Heights
- Visualização 3D, fator de exagero vertical: Menu contextual da cena Scene Properties -General

INFORMAÇÃO DE PARTIDA

- "curvalnivelfaial.shp", camada vetorial com as curvas de nível da ilha do Faial (equidistância de 10m)
- "curvasnivelpico.shp", camada vetorial com as curvas de nível da ilha do Pico (equidistância de 10m)
- pontosfaial.shp" camada vetorial com os pontos cotados da ilha do Faial

pontospico.shp" camada vetorial com os pontos cotados da ilha do Pico

PLANEAMENTO

 Criar os modelos digitais de elevação da ilha do Faial e de Pico utilizando uma interpolação linear (TIN) e o algoritmo de Hutchinson (Topo to Raster) e comparar os resultados utilizando as camadas de sombras.

2. Comparar os modelos num mapa 3D em ArcScene e adicionar uma textura em ArcGlobe.

3. Gerar curvas de nível, declives e exposição de vertentes

Resolução

1. Objetivo: Criar os modelos digitais de elevação da ilha do Faial e de Pico utilizando uma interpolação linear (TIN) e o algoritmo de Hutchinson (Topo to Raster) e comparar os resultados utilizando as camadas de de sombras.

1. Abrir um novo projeto em ArcMap (poderá ser realizado também em ArcScene).

2. Adicionar as camadas vectoriais: pontosfaial e curvasnivelfaial

 Criar um modelo digital de elevação da ilha do Faial. Primeiramente vai-se efectuar uma interpolação linear (TIN).

- ArcToolbox - 3D Analyst Tools - Data Management - TIN - Create TIN

Gera-se o Modelo Digital de Elevação interpolando linearmente as curvas de nível e os pontos cotados (se possui-se, por exemplo, uma camada linear com os rios, esta poderia servir como

linhas de ruputura)

Input Features: "pontosfaial", Height Field "Elevation", SF Type "Mass Points"

"curvasnivelfaial", Height Field "Elevation",

SF Type "Soft_Line"

Output: "mde_tin"

Nota: Caso existisse uma camada com

linhas de ruptura estas seriam "Hard_Line"

O sistema de referência é o WGS_1984_UTM_Zone_26N.

Create TIN					23
Output TIN					^
C: \Users \Tiago \Deskt	C:\Users\Tiago\Desktop\tin_faial				
Coordinate System (op	tional)				
WGS_1984_UTM_Zon	WGS_1984_UTM_Zone_26N				Ξ
Input Feature Class (op	Input Feature Class (optional)				
				- 🖻	
Input Features	Height Field	SF Type	Tag Field	+	
pontosfaial	Elevation	Mass_Points	<none></none>		
curvasnivelfaial	Elevation	Soft_Line	<none></none>		
					Ŧ
OK Cancel Environments Show Help >>					

De modo a produzir o mapa de sombras terá de se converter o TIN para Raster, visto que o algoritmo do *Hillshade* não aceita como input o TIN produzido. Para tal, deve-se utilizar a operação recorrendo ao seguinte comando:

- ArcToolbox - 3D Analyst Tools - Conversion - From TIN - TIN to Raster

Input: mde_tin Output Raster: raster_mde Sampling Distance (optional): CELLSIZE 10

TIN to Raster
Input TIN
mde_tin 🗾 🙆
Output Raster
C:\Users\Tiago\Desktop\11 - Raster 3D\raster_mde
Output Data Type (optional) FLOAT
Method (optional)
Sampling Distance (optional) CELLSIZE 10
Z Factor (optional)
OK Cance Environments Show Help >>

Obtido o raster com o nome "raster_mde" poderá ser realizado o mapa

de sombras. Para tal, deve-se utilizar a operação recorrendo ao seguinte comando:

- ArcToolbox - 3D Analyst Tools - Raster Surface - Hillshade Input raster: raster_mde Output Raster: hs_faial

1 Hillshade		x
Input raster		~
raster_mde	-	3
Output raster	_	
C:\Users\Tiago\Desktop\11 - Raster 3D\hs_faial		3
Azimuth (optional)		
	31	5
Altitude (optional)		_
	4	5
Model shadows (optional)		
Z factor (optional)		
		1 .,
OK Cancel Environments	Show Help	>>

4. Criar um modelo digital de elevação da ilha do Faial utilizando o algoritmo de Hutchinson (Topo to Raster¹).

ArcToolbox - 3D Analyst Tools - Raster Interpolation - Topo to Raster
 Input Features:
 "pontosfaial", Field "Elevation", Type "PointElevation"
 curvasnivelfaial", Field "Elevation", Type "Contour"
 Output surface raster: "TopTR_faial"
 Output cell size: 10

Input feature data	-				
·			- 🖻		
Feature layer	Field	Туре	+		
ontosfaial	Elevation	PointElevation			
curvasnivelfaial	Elevation	Contour	×		
			Ŧ		
Output surface raster			_		
C:\Users\Tiago\Desktop\:	C:\Users\Tiago\Desktop\11 - Raster 3D\TopTR_faial				
Output cell size (optional)					
10			2		
OK	Cancel En	vironments Sh	ow Help >>		

Nota: A operação vai demorar algum tempo devido ao tamanho de célula de 10.

De seguida produz-se o mapa de sombras tendo por base o "TopTR_faial", do mesmo modo que se produziu o anterior.

Baa		END	1000x	
Park		10 Miles		1920
Y	13 A	hiz		H
V2				
	4	All Aller	Station of the second s	

V Hillshade
Input raster
TopTR_faial 💌 🖻
Output raster
C: \Users \Tiago \Desktop \11 - Raster 3D \hsttr_faial
Azimuth (optional)
315
Altitude (optional)
45
Model shadows (optional)
Z factor (optional)
1
-
OK Cancel Environments Show Help >>

Comprova-se que os dois mapas de sombras transparecem claramente o relevo da ilha, apresentando o raster "hsttr_faial" uma interpolação mais suavizada do relevo, notório na observação ampliada da cratera do vulcão.

¹ http://pro.arcgis.com/en/pro-app/tool-reference/3d-analyst/how-topo-to-raster-works.htm

2. Objetivo: Comparar os modelos num mapa 3D em ArcScene e adicionar uma textura em ArcGlobe.

1. Abrir um novo projeto em ArcScene

2. Adicionar as camadas "raster_mde" e "toptr_faial" e simbolizam-se as camadas para uma

melhor comparação.

3. Estabelece-se as altitudes de "toptr_faial" no menu contextual da camada - Properties - Base Heights:

Altitudes a partir de "toptr_faial"

4. Introduz-se um fator de exagero vertical para melhorar a visualização, menu contextual da cena "Scene Layers" - Scene Properties - General:

> Calcula-se o fator automaticamente com Calculate From Extent

General Coordinate System Extent Illumination			
Description:	Packground colors		
*		Restore Default	
· · · · · · · · · · · · · · · · · · ·		No Color	
Vertical Exaggeration: 1,95137 Calculate From Extent			Estabelece-se a cor
Background color: Restore Default		Sugilita Slav	
Use as default in all new documents	🔲 Enable Animated 📕 📃 📕	Sugnite Sky	de fundo em azul
	When you use the Ni		nara sa assamalhar
Enable Animated Rotation	down the left mouse		para se asserrieritar
down the left muse button, drag in the direction you want the scene to rotate, and release the mouse button while the	scene is moving.		ao ceu também no
scene is moving.			
			menu contextual da
			cena.
OK Cancelar Aplicar			

Procedimento semelhante será feito para a camada "raster_mde", sendo o seu Base Heights: "raster_mde". Por fim comparam-se os modelos. O modelo resultante do algoritmo Topo to Raster, como já tinha sido referido anteriormente, pela interpretação visual em ArcMap, apresenta zonas planas, especialmente em zonas de cumes e junto a curvas de nivel sinuosas.

1

Visto fornecidos que não foram os ortofotomapas das ilhas açorianas e de modo a estas possuírem uma textura realista poderá ser feita a visualização destes rasters em ArcGlobe.

1. Abrir um novo projeto em ArcGlobe

2. Adicionar as camadas "raster_mde" e "toptr_faial"

4. Fazer Zoom to Layer e com os comandos de

3. Selecionar a opção Use this layer as elevation souce

navegação acessíveis nos vários botões do

ajustar para a melhor vista 3D de modo a comprovar as ligeiras diferenças entre as Elevation rato Layers, nomeadamente:

- raster_mde
- toptr_faial
- Elevation (90m/1km)

3. Objetivo: Gerar curvas de nível, declives e exposição de vertentes

- 1. Abrir um novo mapa em ArcMap ou ArcScene (sendo o ArcScene visualmente mais atrativo)
- 2. Adicionar o raster "toptr_faial"
- 3. Criar cruvas de nível com equidistância de 5 metros:
- ArcToolbox 3D Analyst Tools Raster Surface Contour

Input raster: toptr_faial Output polyline features: contour_faial Contour interval: 5 (metros)

4. Criar mapa de declives em percentagem: ArcToolbox - 3D Analyst Tools - Raster Surface - Slope

Input raster: toptr_faial Output raster: decl_faial Ouput measurement: PERCENT_RISE

🔨 Slope	
Input raster	^ ^
toptr_faial	I 🖻 🛛
Output raster	_
C:\Users\Tiago\Desktop\11 - Raster 3D\decl_faial	
Output measurement (optional) PERCENT_RISE	
Z factor (optional)	
	1
	v
OK Cancel Environments	Show Help >>

5. Criar mapa de exposição de vertentes tendo por base a camada "raster_mde": ArcToolbox - 3D Analyst

